UniSci - Daily University Science News
Home Search
 

clear.gif (52 bytes)


Nitrogen-Fixing Crops Might Be Produced More Easily

Scientists have reported the discovery of a plant gene that is essential in controlling the interactions between plants and microorganisms that enable them to establish intimate associations of benefit to both partners.

Published Thursday in Nature, the report's findings suggest that it may be easier than previously imagined to design plants that are able to make their own nitrogen fertilizer.

The disovery was made by scientists at the Sainsbury Laboratory (SL) in Norwich, UK.

The roots of many plants are able to form intimate relationships with particular fungi living in the soil. These so-called arbuscular mycorrhizal associations are a symbiosis -­ a partnership of benefit to both partners.

(Arbuscular mycorrhiza are associations between roots and specific soil-living fungi, which are commonly found among many higher plants, including major crops. This is an ancient symbiosis, having been found in fossils of early land plants.)

The fungi are very efficient at absorbing nutrients, especially phosphate, from the soil. This is exchanged with the plant in return for plant sugars that are absorbed and used by the fungus.

In addition to mycorrhiza, the roots of legume plants (members of the pea and bean family) form an unusual and highly specialized symbiosis with bacteria of the genus Rhizobium. This symbiosis enables the bacteria to take nitrogen gas from the atmosphere and convert it into nitrate and ammonia, which are absorbed and used by the plant.

The plants are effectively able to make their own fertilizer as a result of this partnership. In return, the bacteria are able to absorb and use sugars produced by the plant.

“Scientists had always imagined that the nitrogen-fixing symbiosis between legumes and rhizobia bacteria was a unique relationship, so the discovery that it actually uses some of the same genes that control the very common mycorrhizal association of plant roots with fungi, is really exciting” said Dr. Martin Parniske, SL Project leader. “This suggests that evolution of the nitrogen-fixing symbiosis used some of the genes that were controlling the plant-fungal partnerships that are widespread in the plant kingdom."

"So we now know that part of the genetic blueprint needed to establish a symbiotic relationship with nitrogen-fixing bacteria is present in all major plant types, including important crop species such as wheat and rice. Consequently, relatively few genetic changes might enable breeders to produce a wide range of plants that can establish symbiotic relationships with nitrogen fixing bacteria, and perhaps manufacture their own nitrogen fertilizer,” he added.

The report describes the gene that controls a critical step in establishing a symbiosis, which is also the point at which the genetic blueprints for the two types of symbiosis overlap.

Lotus plants, which were unable to form a symbiosis, either with mycorrhiza fungi or with nitrogen-fixing bacteria, because of a gene mutation, were compared with normal plants that could form both kinds of partnership.

In the mutant lines, the relationships failed in their early stages. Analysis at the DNA level enabled the scientists to find the gene involved, so called "SYMRK" (symbiosis receptor-like kinase). This gene produces a molecule that is an essential early link in the chain of events that enables the Lotus plant to recognize, and respond to, mycorrhizal fungi and nitrogen-fixing bacteria living in the soil around its roots.

The chemical structure of the SYMRK molecule suggests it may itself be the receptor that recognizes and binds to molecules specifically produced by mycorrhizal fungi and nitrogen-fixing bacteria.

More research is required, but the researchers think it likely that the SYMRK molecule sits in the outer membrane of the cells of the plant's roots where it is able to bind to chemicals produced by potential fungal and bacterial partners. The binding process changes the structure of the SYMRK molecule and triggers a cascade of reactions that activate genes involved in establishing a successful symbiosis.

The nitrogen-fixing symbiosis between legumes and Rhizobium bacteria is thought to be a relatively recent evolutionary development. Infected plants develop nodules on their roots that accommodate the bacteria. Root nodules can be thought of as the natural bio-reactors in which the conditions for nitrogen fixation are maintained.

In response to the presence of compatible bacteria, the root hairs of the legume host start to curl. In these curled regions infection threads form that allow the bacteria to enter the cells of the root hairs, These threads give rise to the root nodules in which the bacteria undergo physical and biological changes that enable them to fix atmospheric nitrogen.

The manufacture of ammonium fertilizer is an energy intensive process while the application of manufactured, and natural, nitrogen fertilizers can have adverse environmental impacts (eg. run-off to ground water). The ability of legumes to fix atmospheric nitrogen is the reason they are included in farm rotations ­- as a means to return nitrogen to the soil.

Rhizobia bacteria are known to produce so called Nod (nodulating) factors that stimulate the initial root hair curling response that precedes infection and nodulation. In Lotus plants with the mutant SYMRK gene treatment with Nod factors did not induce root hair curling.

The Sainsbury Laboratory has a worldwide reputation for research on molecular plant-microbe interactions. The major aim of the Laboratory is to pursue the fundamental processes involved in the interactions of plants and their microbial pathogens and symbionts.

Funding for the Laboratory is primarily through grants from a charitable foundation. In addition, grants are obtained from research councils, the European Union and other organizations. The laboratory is located at the John Innes Centre, Norwich, UK, which is an independent, world-leading research center in plant and microbial science.

(Reference: Nature 417 27 Jun 2002 959-962.)

Related website:

The Sainsbury Laboratory

28-Jun-2002

 

 

 

 

clear.gif (52 bytes)

Add the UniSci Daily Java News Ticker to Your Site or Desktop.
Click for a demo and more information.

 

HOME | ARCHIVES | ABOUT | PIOs | BYLINES | WHY SCIENCE | WHY UNISCI | PROSTATE | POLIO

Copyright © 1995-2002 UniSci. All rights reserved.